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LETTER TO THE EDITOR

Droplets in the coexistence region of the two-dimensional Ising
model
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‡ Institut für Theoretische Physik 1, Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
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Abstract. The two-dimensional Ising model with fixed magnetization is studied using Monte
Carlo techniques. At the coexistence line, the macroscopic, extensive droplet of minority spins
becomes thermally unstable by breaking up into microscopic clusters. Intriguing finite-size effects
as well as singularities of thermal and cluster properties associated with the transition are discussed.

The two-dimensional Ising model has attracted much interest in the past. It is conceptually
simple, and several of its non-trivial properties can be determined exactly [1]. However, despite
numerous studies, the model seems to be not yet completely understood.

In this letter, we shall deal with the thermal stability of a droplet of minority spins in
the two-dimensional Ising model with fixed magnetization, monitoring the transition from a
compact single, macroscopic and extensive droplet at low temperatures to an ensemble of
small clusters at high temperatures. Although related cluster equilibrium properties have been
studied rather carefully in the usual, grand-canonical Ising model [2, 3], this topic seems
to have been largely overlooked. Only recently, the corresponding thermal behaviour of an
adatom or vacancy island of monoatomic height on a crystal surface has been investigated [4].

In particular, we consider a square lattice with L2 sites and full periodic boundary
conditions. Neighbouring spins, Si(j) = ±1, may interact ferromagnetically, with the coupling
term −JSiSj , J > 0. We assume that N2, out of totally L2, spins are ‘−’ spins, with the
magnetization

M = 1 − 2(N2/L2) (1)

being conserved when varying the temperature, T .
The resulting phase diagram in the (M, T )-plane is known to display a transition of first

order between droplet and stripe phases [5–7]. The transition takes place in the coexistence
region, which is bounded by T0(M0) describing the temperature dependence of the spontaneous
magnetization of the standard Ising model. In the thermodynamic limit, M0 is determined by [1]

M0 = [1 − (sinh 2J/(kBT0))
−4]1/8. (2)

Another intriguing feature of the droplet phase in the coexistence region, T < T0, will be
discussed in the following, the thermal stability of the droplet of minority spins, i.e. ‘−’ spins
for M > 0.

At M > 1
2 , the N2 minority spins form a single square droplet in the ground state. When

increasing the temperature at fixed magnetization, the largest cluster will, of course, shrink,
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Figure 1. Typical equilibrium configurations of the two-dimensional Ising model, at M = 0.68,
below ((a) kBT/J = 2) and above ((b) kBT/J = 2.25) the cluster transition, simulating a lattice
with 1002 sites; ‘−’ spins are denoted by dark squares.

but it may be, at sufficiently low temperatures, still extensive, with the number of cluster spins,
thermally averaged, 〈Nc〉, being proportional to L2 (∝N2). Accordingly, the droplet size nc

defined by

nc = 〈Nc〉/N2 (3)

will be non-zero in the thermodynamic limit, L, N −→ ∞, with M (N/L) being constant.
However, at and above the coexistence line, T > T0, the largest cluster is expected to be

non-extensive [2], see figure 1. Thence, one expects a ‘cluster transition’, Tcl at or below T0.
Indeed, assuming that, in the coexistence region, see [8],

−Md = Ms = M0 (4)

where Md is the magnetization in the droplet, Ms is the magnetization in the rest of the system,
and M0 is given by equation (2), one may easily obtain nc(T ), at fixed magnetization M , as

nc(T ) = (1 + M0)(M0 − M)/(2M0(1 − M)). (5)

Obviously, the droplet size will then vanish linearly in the reduced temperature t = |T0−T |/T0

as T −→ T0 [9].
To investigate the cluster transition and to check this relation, we performed Monte Carlo

simulations using a nonlocal spin-exchange algorithm [10] as well as an efficient cluster
algorithm [11], studying square lattices of various sizes, L2, with L ranging from 25 to 950,
at various magnetizations M , ranging from 0.68 to 0.98.

As illustrated in figure 2, the droplet size nc(M, L, T ) seems to approach equation (5), as
one considers larger and larger lattices, being presumably valid in the thermodynamic limit,
L, N −→ ∞. This behaviour holds at all values of M , we studied. In addition, one observes
rather interesting finite-size effects.

First, the cluster transition is signalled, in a finite system, by the turning point of nc(T ),
at Ts(L). For moderate system sizes, with L up to, say, 750, Ts(L) is found to vary (almost)
linearly in 1/L, for different values of M . A straightforward linear extrapolation would yield
cluster transition temperatures close to, but somewhat below T0. Accordingly, one may expect
subtle finite-size corrections to the observed linear behaviour. In this context, attention is
drawn to the non-monotonic size dependence of nc(T ) close to the coexistence temperature
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Figure 2. Droplet size nc as function of temperature for lattice sizes L ranging from 125 to 750, at
fixed magnetization M = 0.92. Error bars stem from averaging over at least N = 10 Monte Carlo
runs with different random numbers. The dashed curve corresponds to equation (5).

T0, see figure 2. Obviously, rather large systems need to be considered in the vicinity of T0 to
allow a reliable extrapolation to the thermodynamic limit.

Another interesting finite-size effect is found by studying the size dependence of the
largest cluster 〈Nc〉 close to T0. For small lattices, the droplet size scales as Lx , with the
(effective [12]) exponent x, at fixed temperature, being quite small, for example, at M = 0.92,
x is seen to be around 0.5 to 0.7. Only for larger lattices, does the cluster seems to become
more compact, with x ≈ 2. The crossover, at Lc, is characterized by a pronounced peak in the
effective exponent x, with the peak height and crossover length Lc increasing as T approaches
T0. Obviously, this phenomenon is not predicted by equation (5) which assumes a compact,
extensive droplet, as seems to be correct in the thermodynamic limit.

Previous evidence for the cluster transition is rather scarce. In the context of an adatom
island on a crystal surface, the related transition was noticed [4], but it was not discussed in the
framework of the phase diagram of the corresponding Ising model. In that study, a non-trivial
critical exponent describing the vanishing of the droplet size nc on approach to the cluster
transition had been obtained, estimating the transition temperature from a straightforward
linear extrapolation of simulational data for moderate system sizes, as discussed above. A
possible hint on the cluster transition might be hidden in a renormalization group study of
Saito [13] on quenches in Ising models with conserved magnetization, finding, however,
a transition below the coexistence line, without mentioning of the thermal stability of the
droplet. Attention is also drawn to the work of Kertész on droplet stability in Ising models
in an external field [14] as well as related recent work on Ising cubes [15, 16] and cluster
shapes [8].

It looks quite promising to analyse various cluster properties close to the cluster transition,
in analogy to percolation studies [3]. For instance, we find that the second moment of the cluster
size distribution, excluding the largest cluster, shows a pronounced peak close to Ts, indicating
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a divergence at the cluster transition in the thermodynamic limit. Furthermore, the specific
heat also displays a pronounced maximum close to Ts.

In summary, we conclude that there seems to be, in the two-dimensional Ising model with
conserved magnetization, a cluster transition at the coexistence line, at which the droplet of
minority spins loses, in the thermodynamic limit, its extensivity. We think that the interesting
cluster and thermal properties as well as finite-size effects close to that transition deserve to
be studied in more detail in the future, both in two and three dimensions.

Useful discussions with H van Beijeren, J Hager, J Schmelzer Jr, D Stauffer, and Y Velenik
are gratefully acknowledged. MP thanks the Deutsche Forschungsgemeinschaft for financial
support.
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